2,040 research outputs found

    Three Corner Sat Constellation - New Mexico State University: Communications, LEO Telecommunications Services, Intersatellite Communications, and Ground Stations and Network

    Get PDF
    The Three Corner Satellite Constellation is part of the AFOSRlDARP A University Nanosatellite program. This project is a joint effort among Arizona State University (ASU), University of Colorado at Boulder (CU), and New Mexico State University (NMSU). The constellation will consist of three identical nanosatellites, that will demonstrate stereo imaging, innovative command and data handling, and formation flying with RF communications and a possibility of cellular phone communications through LEO telecommunications satellites. To achieve mission objectives, the satellites in the constellation and the ground communications network will need to be designed as a cooperative communications and control network that will allow the satellites in the constellation to form a virtual formation. In this paper, we will present the necessary communications and control architecture for the space segment and the ground segment to form this virtual formation that are NMSU\u27s responsibility in the program. Companion papers describe the respective areas of responsibility of the other partners: ASU -Project Management; Electrical Power System; Structures, Mechanisms, Thermal, and Radiation; Attitude/Orbit Determination and Control; Micropropulsion experiment; and • Integration; CU -- Command & Data Handling, Distributed Operations, Stereoscopic Imaging, Science Operations, and Spacecraft Operations

    Swelling of Transported Smoke from Savanna Fires over the Southeast Atlantic Ocean

    Get PDF
    We use the recently released Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Version 4.1 (V4) lidar data to study the smoke plumes transported from Southern African biomass burning areas. Significant improvements in the CALIPSO V4 Level 1 calibration and V4 Level 2 algorithms lead to a better representation of their optical properties, with the aerosol subtype improvements being particularly relevant to smoke over this area. For the first time, we show evidence of smoke particles increasing in size, evidenced in their particulate color ratios, as they are transported over the South Atlantic Ocean from the source regions over Southern Africa. We hypothesize that this is due to hygroscopic swelling of the smoke particles and is reflected in the higher relative humidity in the middle troposphere for profiles with smoke. This finding may have implications for radiative forcing estimates over this area and is also relevant to the ORACLES field mission

    Swelling of Transported Smoke from Savanna fires over the Southeast Atlantic Ocean

    Get PDF
    We use the recently released Version 4 (V4) lidar data products from CALIPSO to study the smoke plumes transported from Southern African biomass burning areas. The significant improvements in CALIPSO V4 Level 1 calibration and the V4 Level 2 aerosol subtyping algorithms, the latter being particularly relevant to biomass burning smoke over this area, lead to a better representation of their optical properties. For the first time, we show evidence of smoke particles increasing in size, evidenced in their particulate color ratios, as they are transported over the South Atlantic Ocean from the source regions over Southern Africa. This is likely due to hygroscopic swelling of the smoke particles and is reflected in the higher relative humidity in the middle troposphere for profiles with smoke. This finding may have implications for radiative forcing estimates over this area and is relevant to the ORACLES field mission that is currently underway

    Aquaporin-4 and brain edema.

    Get PDF
    Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury

    Therapeutic targeting of replicative immortality

    Get PDF
    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy

    Surface plasmons of metallic surfaces perforated by nanoholes

    Full text link
    Recent works dealt with the optical transmission on arrays of subwavelength holes perforated in a thick metallic film. We have performed simulations which quantitatively agree with experimental results and which unambiguously evidence that the extraordinary transmission is due to the excitation of a surface-plasmon-polariton (SPP) mode on the metallic film interfaces. We identify this SPP mode and show that its near-field possesses a hybrid character, gathering collective and localised effects which are both essential for the transmission.Comment: 16 pages, 4 figure

    Mutator system derivatives isolated from sugarcane genome sequence

    Get PDF
    Mutator-like transposase is the most represented transposon transcript in the sugarcane transcriptome. Phylogenetic reconstructions derived from sequenced transcripts provided evidence that at least four distinct classes exist (I- IV) and that diversification among these classes occurred early in Angiosperms, prior to the divergence of Monocots/ Eudicots. The four previously described classes served as probes to select and further sequence six BAC clones from a genomic library of cultivar R570. A total of 579,352 sugarcane base pairs were produced from these "Mutator system" BAC containing regions for further characterization. The analyzed genomic regions confirmed that the predicted structure and organization of the Mutator system in sugarcane is composed of two true transposon lineages, each containing a specific terminal inverted repeat and two transposase lineages considered to be domesticated. Each Mutator transposase class displayed a particular molecular structure supporting lineage specific evolution. MUSTANG, previously described domesticated genes, are located in syntenic regions across Sacharineae and, as expected for a host functional gene, posses the same gene structure as in other Poaceae. Two sequenced BACs correspond to hom(eo)logous locus with specific retrotransposon insertions that discriminate sugarcane haplotypes. The comparative studies presented, add information to the Mutator systems previously identified in the maize and rice genomes by describing lineage specific molecular structure and genomic distribution pattern in the sugarcane genome. (Résumé d'auteur

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015
    • …
    corecore